Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 81
Filtrar
1.
Forensic Toxicol ; 42(1): 31-44, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37755669

RESUMO

PURPOSE: According to recent reports, cannabigerol (CBG) concentration level in blood and body fluids may have forensic utility as a highly specific albeit insensitive biomarker of recent cannabis smoking. While the analytical sensitivity of cannabidiol (CBD), Δ9-tetrahydrocannabinol (Δ9-THC), cannabichromene (CBC) or cannabinol (CBN) estimation by gas chromatography-mass spectrometry (GC-MS) is similar and sufficiently high, it is exceptionally low in the case of CBG (ca. 25 times lower than for the other mentioned cannabinoids). The purpose of this study is to explain the reasons for the extremely low analytical sensitivity of GC-MS in estimating CBG and to present possible ways of its improvement. METHODS: Nuclear magnetic resonance (NMR) data and GC-MS responses to CBG and its various derivatization and transformation products were studied. RESULTS: The validation data of individual derivatives of CBG and its transformation products were established. CBG silylation/acylation or hydration allows to decrease LOD about 3 times, whereas the formation of pyranic CBG derivative leads to 10-times decrease of LOD. The paper enriches the literature of the subject by providing MS and NMR spectra, not published so far, for derivatives of CBG and its transformation products. The most likely cause of low GC-MS response to CBG is also presented. CONCLUSIONS: The presented results shows that although the signal increase of CBG can be obtained through its derivatization by silylation and/or acylation, the greatest increase is observed in the case of its cyclization to the pyranic CBG form during the sample preparation process. The CBG cyclization procedure is very simple and workable in estimating this cannabinoid in blood/plasma samples.


Assuntos
Canabidiol , Canabinoides , Espectrometria de Massas em Tandem , Espectrometria de Massas em Tandem/métodos , Cromatografia Gasosa-Espectrometria de Massas , Canabidiol/análise , Canabinol/análise
2.
Drug Test Anal ; 16(2): 210-220, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37343943

RESUMO

The analysis of cannabinoids in whole blood is usually done by traditional mass spectrometry (MS) techniques, after offline cleanup or derivatization steps which can be lengthy, laborious, and expensive. We present a simple, fast, highly specific, and sensitive method for the determination of Δ9 -tetrahydrocannabinol (THC), cannabidiol (CBD), cannabinol (CBN), 11-hydroxy-Δ9 -tetrahydrocannabinol (11-OH-THC), and 11-nor-9-carboxy-Δ9 -tetrahydrocannabinol (THC-COOH) in 50 µL whole blood samples. After the addition of deuterated internal standards (IS) and a simple protein precipitation step, an online extraction of sample supernatants using turbulent flow chromatography (TurboFlow-Thermo Scientific) was carried out. Analytes were separated on a C18 analytical column and detected by LC-HRAM-Orbitrap-MS using a Thermo Scientific Q Exactive Focus MS system. MS detection was performed in polarity switching and selected ion monitoring (SIM) modes using five specific acquisition windows, at a resolution of 70,000 (FWHM). Total run time was about 10 min including preanalytical steps. Method validation was carried out by determining limit of detection (LOD), lower limit of quantitation (LLOQ), linearity range, analytical accuracy, intra-assay and interassay precision, carry-over, matrix effect, extraction recovery, and selectivity, for all analytes. Measurement uncertainties were also evaluated, and a decision rule was set with confidence for forensic purposes. The method may become suitable for clinical and forensic toxicology applications, taking advantage of the small matrix volume required, the simple and cost-effective sample preparation procedure, and the fast analytical run time. Performances were monitored over a long-term period and tested on 7620 driving under the influence of drugs (DUID) samples, including 641 positive samples.


Assuntos
Canabinoides , Dirigir sob a Influência , Canabinoides/metabolismo , Dronabinol/análise , Espectrometria de Massas , Canabinol/análise , Cromatografia Líquida/métodos
3.
Curr Pharm Des ; 29(24): 1918-1928, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37559239

RESUMO

INTRODUCTION: Cannabis sativa L. is a well-recognized medicinal plant. Cannabis regulations in Argentina are insufficient to solve the problem of patient access to full-spectrum cannabis-based products. So, the market of artisanal products with unknown quality and dosage of cannabinoids is increasing, and so is the local demand and need for analyzing these products. However, much of the latest validated methodologies for cannabinoid quantification include expensive instrumentation that is not always available in laboratories of health institutions in Argentina. METHODS: The aim of this work was to develop and validate a simple and rapid HPLC-UV method for the identification and quantification of principal cannabinoids in cannabis resins, inflorescences, and medicinal oils using standard HPLC equipment. The cannabinoids selected for validation were cannabidiol acid (CBDA), cannabigerol (CBG), cannabidiol (CBD), cannabinol (CBN), delta-9-tetrahydrocannabinol (Δ9-THC), cannabichromene (CBC), and tetrahydrocannabinol acid (THCA). A method for the simultaneous identification and quantification of these 7 main cannabinoids was developed and then validated. Some data parameters were comparable to other reports with more sophisticated analytical instruments for the analysis of cannabis. The assessed limits of detection and the limits of quantitation ranged from 0.9 to 3.66 µg/mL and 2.78 to 11.09 µg/mL, respectively. The concentration-response relationship of the method indicated a linear relationship between the concentration and peak area with R2 values of > 0.99 for all 7 cannabinoids. RESULTS: The relative standard deviation (RSD%) varied from 2.34 to 4.82 for intraday repeatability and from 1.16 to 3.15 for interday repeatability. The percentage of recovery values was between 94 to 115% (resins) and 80 to 103% (inflorescence extract). The cannabis industry is growing rapidly, and there is a need for reliable testing methods to ensure the safety and efficacy of cannabis products. In addition, current methods for cannabinoid analysis are often time-consuming and expensive, while the HPLC-UV method herein reported is a simple, rapid, accurate, and cost-effective alternative for the analysis of cannabinoids in cannabis resins, inflorescences, and medicinal oils. CONCLUSION: This method will be proposed to be included in the Cannabis sativa L. monograph of the Argentine Pharmacopoeia.


Assuntos
Canabidiol , Canabinoides , Cannabis , Alucinógenos , Humanos , Dronabinol/análise , Cromatografia Líquida de Alta Pressão/métodos , Canabinoides/análise , Canabinol/análise , Óleos , Extratos Vegetais/análise
4.
Forensic Sci Int ; 349: 111762, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37392612

RESUMO

In recent years, the therapeutic use of cannabis products, especially cannabis oils, has increased significantly, due to the pharmacological potential of their cannabinoids, for the treatment of conditions, such as pain management, cancer, and epilepsy. In Argentina, patients with medical prescriptions can access to cannabis oil, through self-cultivation, a third-person (grower or importer), or a civil organization authorized for that purpose. However, these products remain largely unregulated in Argentina, and information available regarding labeling accuracy, especially cannabidiol (CBD)/ Δ9-tetrahydrocannabinol (Δ9-THC) concentrations are inconsistent or nonexistent, nor long-term product stability, and lot to lot variability. Understanding these properties is fundamental if these products are to be used in patients with a determinate pathology. Therefore, we analyzed commercially available cannabis oils (n: 500) in Argentina for qualitative and quantitative cannabinoids content. In order to provide a detailed overview of their cannabinoids profiles, and determine Δ9-THC, CBD, and cannabinol (CBN) concentrations, samples were diluted and analyzed by gas chromatography- mass spectrometry (GC/MS). Most of the samples tested positive for cannabinoids (n: 469) with Δ9-THC and CBD as the predominant cannabinoids. Among products tested, only 29.8% (n: 149) gave specific CBD label claims, and testing indicated a CBD tested positive of 70.5% (n: 105). For products (n: 17) with a THC-free label claim, testing indicated 76.5% (n: 13) of Δ9-THC positive, and cannabinoids were not detected in four products. Δ9-THC concentrations ranged from 0.1 to 143.0 mg/mL, CBD concentrations from 0.1 to 125.3 mg/mL, and CBN concentrations from 0.04 to 60.10 mg/mL; CBN/ Δ9-THC ratios ranged from 0.0012 to 2.31, and CBD/ Δ9-THC ratios from 0.0008 to 178.87. Furthermore, the (Δ9-THC + CBN)/CBD ratio of most samples was greater than one. In summary, our results indicate that cannabis oil products show wide variability in cannabinoids content, purity, and labeling.


Assuntos
Canabidiol , Canabinoides , Cannabis , Alucinógenos , Humanos , Canabinoides/análise , Dronabinol/análise , Argentina , Canabinol/análise , Agonistas de Receptores de Canabinoides , Óleos
5.
J Chromatogr A ; 1705: 464191, 2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-37454455

RESUMO

The characterisation of cannabis plants, especially the determination of specific phytocannabinoids, has gained enormous importance in the last decade, mainly due to the recent changes in cannabis control in several countries or states. This is particularly relevant for the forensic, medical or recreative industry to have a rapid, inexpensive, and reliable methodology to identify and quantify phytocannabinoids. Furthermore, spiking cannabis products with Δ8-tetrahydrocannabinol (THC) is a contemporary trend that demands improving or replacing current methods to include this cannabinoid. The current study presents an ultrasound-assisted solid-liquid extraction followed by high-performance liquid chromatography with diode array detection (HPLC-DAD) methodology to identify and quantify Δ9-THC, Δ8-THC, cannabidiol, cannabinol, Δ9-tetrahydrocannabinolic acid and cannabidiolic acid in cannabis products. The herbal samples were extracted with ethanol:acetonitrile (50:50, v:v) by ultrasonication using only 50 mg of sample. The plant oils were diluted in ethanol. The optimised procedure allowed ≈100% extraction efficiency of the target cannabinoids. The validation assays showed that the method is linear (R2 > 0.997), selective, sensitive, precise and accurate, with suitable limits of detection (0.125-0.250 µg mL-1) and quantification (0.500 µg mL-1). The method was successfully applied to cannabis samples, demonstrating its suitability for routine analyses. This contribution follows the current demand for fast and straightforward analysis services of this plant and its derivatives, using small amounts of sample. The present study compares very favourably against other works, particularly in regards to the extraction efficiency, speed of the overall procedure, method sensitivity, and ability to monitor Δ8-THC spiked samples using a novel solvent mixture.


Assuntos
Canabidiol , Cannabis , Cannabis/química , Cromatografia Líquida de Alta Pressão/métodos , Dronabinol/análise , Extratos Vegetais/química , Canabinol/análise , Canabidiol/análise
6.
Yakugaku Zasshi ; 143(4): 411-418, 2023.
Artigo em Japonês | MEDLINE | ID: mdl-37005243

RESUMO

Eleven major cannabinoids from each subdivided tissue of drug-type and fiber-type cannabis plants were determined by means of a liquid chromatography quadrupole time-of-flight mass spectrometry (LC-Q-TOF-MS). The cannabinoids analyzed in this study were tetrahydrocannabinol acid (THCA), Δ9-tetrahydrocannabinol (Δ9-THC), cannabidiol acid (CBDA), cannabidiol (CBD), Δ8-tetrahydrocannabinol (Δ8-THC), cannabinol (CBN), cannabichromene (CBC), cannabidivarin (CBDV), cannabigerolic acid (CBGA), cannabigerol (CBG) and tetrahydrocannabivarin (THCV). As a result, THCA was detected in the bracts at 28.4 µg/mg, in the buds at 24.8 µg/mg, and in the leaves at 5.1 to 10.5 µg/mg in the drug-type cannabis plant. In addition, Δ9-THC, CBGA, CBN, CBG, CBC, and THCV were mainly detected in bracts, buds, and leaves. On the other hand, as for the fiber-type cannabis plant, CBDA was detected in the bracts at 27.5 µg/mg, in the buds at 10.6 µg/mg, and in the leaves at 1.5-3.3 µg/mg. In addition, Δ9-THCA, CBD, Δ9-THC, CBC, and CBG were mainly detected in bracts, buds, and leaves.


Assuntos
Canabidiol , Canabinoides , Cannabis , Cannabis/química , Dronabinol/análise , Canabidiol/análise , Cromatografia Líquida/métodos , Espectrometria de Massas , Canabinol/análise
7.
J Pharm Biomed Anal ; 230: 115388, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-37086553

RESUMO

The knowledge about the stability of compounds and possible ways of their transformation in the process of sample preparation for analysis and during analysis itself is very helpful in the assessment of possible errors which can appear when an accurate and precise estimation of compound concentration in tested samples is attempted. The present paper shows that a significant amount of CBD present in the blood/plasma sample analyzed by means of GC transforms in the hot GC injector not only to 9α-hydroxyhexahydrocannabinol, 8-hydroxy-iso-hexahydrocannabinol, Δ9-tetrahydrocannabinol, Δ8-tetrahydrocannabinol, and cannabinol but also to the trichloroacetic esters of Δ9-THC and Δ8-THC and, unexpectedly, to their dichloroacetic esters when trichloroacetic acid is used as protein precipitation agent. The increase of GC injector temperature favors the formation of dichloroacetic esters of Δ9-THC and Δ8-THC in relation to their trichloroacetic ones. The appearance of dichloroacetic esters of Δ9-THC and Δ8-THC among CBD transformation products is probably the result of the thermal decomposition of their trichloroacetic esters. The transformation of trichloroacetic derivatives of organic compounds into their dichloroacetic derivatives in GC injector has not been reported yet. The instability of trichloroacetic derivatives of Δ8-/Δ9-THC during their GC analysis is probably accounts for the lack of their GC-MS spectra in the databases. NMR, GC-MS and LC-MS spectra of the newly discovered derivatives constitute an important element of the work. The obtained results demonstrate why the use of trichloroacetic acid for plasma samples deproteinization should be avoided when CBD and/or THC are determined by GC.


Assuntos
Canabidiol , Canabidiol/análise , Dronabinol , Artefatos , Ácido Tricloroacético , Canabinol/análise , Canabinol/química
8.
J Pharm Biomed Anal ; 231: 115412, 2023 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-37087774

RESUMO

A quantitative analytical procedure was developed and validated by the use of Ultra- Performance Liquid Chromatography tandem Mass Spectrometry (UPLC-MS/MS) for the determination of Cannabidiol (CBD), Cannabinol (CBN), Δ9-Tetrahydrocannabinol (Δ9-THC), Cannabichromene (CBC), Cannabigerol (CBG) and 11-Nor- 9- Carboxy- Tetrahydrocannabinol (THC-COOH) in an unconventional biological matrix, cerumen. All the investigated calibration curves were characterized by high correlation values (R2 ≥ 0.9965). The LODs and LOQs ranged from 0.004 to 0.009 µg g-1 and 0.012-0.029 µg g-1, respectively. Intra-assay and inter-assay precision were found to be 0.6-2.5%, and 0.8-2.2%, respectively. All recovery values of cannabinoids, with the use of the optimum cotton swab, at low (0.008 µg g-1 of cerumen), medium (0.037 µg g-1of cerumen) and high (0.16 µg g-1 of cerumen) control levels, were estimated to be above 86%. The method developed here permitted the analysis of real cerumen samples obtained from fourteen cannabis users. In twelve out of fourteen cases, Δ9-THC was found to be positive, while in six cases, three major cannabinoids, CBN, CBG and Δ9-THC were quantified at concentrations 0.02-0.21 µg g-1, 0.01-0.24 µg g-1 and 0.01-4.86 µg g-1, respectively. Subject #8 has the highest amount of the detected substances in both left and right ear, with Δ9-THC at a concentration of 1.85 and 4.86 µg g-1, CBG 0.06 and 0.24 µg g-1, CBN 0.10 and 0.21 µg g-1, respectively. In addition, a detection window for the substances Δ9-Tetrahydrocannabinol, Cannabinol and Cannabigerol, in cerumen, was defined with success. In this case, Δ9-THC reached a maximum detection frame of up to fifteen days after smoking 0.5 g of marijuana cigarette. ANOVA-one-way analysis also indicated that the average earwax production of non-cannabis users differs significantly from the one of cannabis users (p = 0.048, <0.05). On the other hand, no significant difference was noticed between male and female users as the p value exceeded 0.05. In addition, no significant effect was observed on earwax production in regard to age, frequency and the last time of use (p > 0.05). These last three factors proved to have a significant impact on cannabinoids concentrations, since p values were less than 0.05.


Assuntos
Canabinoides , Cannabis , Alucinógenos , Transtornos Relacionados ao Uso de Substâncias , Humanos , Masculino , Feminino , Dronabinol/análise , Canabinol/análise , Cromatografia Líquida/métodos , Espectrometria de Massas em Tandem/métodos , Cerume/química , Canabinoides/análise , Biomarcadores
9.
Molecules ; 28(3)2023 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-36770970

RESUMO

A colorimetric method for the estimation of the total content of cannabinoids in cannabis samples is proposed. The assay is based on the reaction of these compounds with the reagent Fast Blue B (FBB), which has been immobilized into polydimethylsiloxane (PDMS). The reaction and detection conditions have been established according to the results obtained for the individual cannabinoids Δ9-tetrahydrocannabidiol (THC), cannabidiol (CBD), and cannabinol (CBN), as well as for ethanolic extracts obtained from cannabis samples after ultrasonication. In contact with the extract and under basic conditions, the reagent diffuses from the PDMS device, producing a red-brown solution. The absorbances measured at 500 nm after only 1 min of exposure to the FBB/PDMS composites led to responses proportional to the amounts of the cannabinoids in the reaction media. Those absorbances have been then transformed in total cannabinoid content using CBD as a reference compound. The potential utility of the proposed conditions has been tested by analyzing different cannabis samples. The selectivity towards other plants and drugs has been also evaluated. The present method is proposed as a simple and rapid alternative to chromatographic methods for the estimation of the total content of cannabinoids.


Assuntos
Canabidiol , Canabinoides , Cannabis , Alucinógenos , Canabinoides/análise , Cannabis/química , Dronabinol/análise , Colorimetria , Canabinol/análise , Canabidiol/análise , Agonistas de Receptores de Canabinoides
10.
Drug Test Anal ; 15(6): 689-694, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36597181

RESUMO

In the last 2 years, the number of shops selling CBD-rich THC-deprived cannabis flowers (CrTd) has increased considerably in France as in many European countries. The objective of this study was to determine the actual composition of the samples sold in these stores and to discuss regulatory consequences that may affect users. Samples were provided from shops in the region Provence-Alpes Cote d'Azur (PACA), France. Pictures of the samples were taken before they were weighed then crushed. Twenty milligrams were diluted in 10 ml heptane ethyl acetate (7:1; v:v) for analysis by liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS). The method was validated according to SWGTOX guidelines for the quantification of cannabidiol (CBD), delta-9-tetrahydrocannabinol (THC) and cannabinol (CBN). Thirty-nine samples obtained between November 2021 and January 2022 in the PACA region were analyzed in this study. Mean content was 0.32% (0.03%-0.77%; STDV = 0.17%; n = 39) for THC, 2.23% (0.01%-5.97%; STDV = 1.29%; n = 39) for CBD and 0.01% (0.004%-0.025%; STDV = 0.01%; n = 19) for CBN. THC content over the threshold defined by the European legislation (>0.3%) was found in 18 of the 39 samples analyzed together with a CBD content <1% in nine samples (23%). None of the products analyzed had health risk messages on the packaging. The consumption of these products may lead to the presence of THC in biological fluids, which can be detected by screening. Users may then find themselves in breach of the law particularly when driving. Consumers should therefore be informed both about the actual composition of these products and about the legal and health risks they run.


Assuntos
Canabidiol , Canabinoides , Cannabis , Alucinógenos , Canabinoides/análise , Cannabis/química , Cromatografia Líquida , Inflorescência/química , Espectrometria de Massas em Tandem , Canabinol/análise , Canabidiol/análise , Agonistas de Receptores de Canabinoides , França , Dronabinol/análise
11.
Adicciones ; 35(3): 279-288, 2023 Sep 01.
Artigo em Inglês, Espanhol | MEDLINE | ID: mdl-33768267

RESUMO

The present study investigates the concentration of Delta (9)-tetrahidrocannabinol (THC), cannabidiol (CBD) and cannabinol (CBN) in 60 samples of cannabis resin acquired on the streets of Madrid region and its potential danger to consumers' health. Additionally, we study the possible correlation between the potency of samples and their organoleptic characteristics. The analysis of cannabinoids was carried out using a high performance liquid chromatography (RP-HPLC-UV). To classify samples, a strength scale based on THC content was established. THC content in 76.7% of the samples was higher than 15%. This potency allows these samples to be classified as Schedule I or drugs with "unacceptable risk" for human health. THC content in 36.7% of the samples was 28.8% on average, which means very high potency. The mean CBD content was 5%, while the correlation between the CBD/THC ratio and potency was negative. The mean content of CBN was 1.74% and the CBN/THC ratio also showed a negative correlation in respect to potency. When investigating the possible correlation between sample potency and organoleptic characteristics, those samples which simultaneously presented sticky texture, high elasticity and light brown colour had very high potency, with an average THC content of 28.7%. Our study shows that the THC content of most of the cannabis that can be purchased in Madrid region is over 15% and poses a health hazard. Additionally, we demonstrate for the first time that only those samples with very high potency can be directly associated with certain organoleptic characteristics.


El presente estudio investiga la concentración de Delta(9)-tetrahidrocannabinol (THC), cannabidiol (CBD) y cannabinol (CBN) en 60 muestras de resina de cannabis adquiridas en las calles de Madrid y su potencial riesgo para la salud del consumidor. Adicionalmente, estudiamos la posible asociación entre la potencia de las muestras y sus características organolépticas. El análisis de cannabinoides se llevó a cabo mediante cromatografía líquida de alta resolución (RP-HPLC-UV). Atendiendo al contenido en THC se estableció una escala de potencia para clasificar las muestras. El 76,7% de las muestras tenía un contenido en THC superior al 15%, esta potencia las cataloga como drogas de Grado I con "riesgo inaceptable" para la salud. El 36,7% de las muestras presentaron un contenido medio en THC del 28,8% (potencia muy alta). El contenido medio en CBD fue del 5% y el de CBN 1,74%; ambas ratios, CBD/THC y CBN/THC, mostraron una correlación negativa con la potencia. Al investigar la posible asociación entra potencia y características organolépticas, se observó que las muestras que presentaban a la vez una textura pegajosa, una elasticidad alta y un color marrón claro, tenían una potencia muy alta, con un contenido medio en THC del 28.7%. Nuestro estudio muestra que el contenido en THC de la mayoría de la resina de cannabis que puede adquirirse en Madrid es superior al 15% y supone un elevado riesgo para la salud. Adicionalmente, demostramos por primera vez que solo aquellas muestras con una potencia muy alta pueden asociarse directamente con ciertas características organolépticas.


Assuntos
Canabidiol , Canabinoides , Cannabis , Humanos , Cannabis/química , Dronabinol/análise , Canabinoides/análise , Canabinol/análise , Canabidiol/análise
12.
Cannabis Cannabinoid Res ; 8(1): 197-206, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-33998894

RESUMO

Introduction: A recent law (DCTO-2020-883-APN-PTE-Law No. 27,350. Regulation) passed in Argentina put an end to the ban imposed for the last 60 years on cannabis cultivation within the country. The law permits restricted access to cannabis derivatives for medicinal, therapeutic, and palliative use by individuals and communities, allowing self- and community-based cannabis production. This is cause for concern in view of the lack of quality controls for cannabis derivatives. The several varieties of cannabis grown in Argentina have different chemical profiles and are processed in a variety of ways-mostly by alcohol extraction or maceration at different temperatures and for different amounts of times-making the cannabinoid content of these preparations highly variable. Determining the characteristics of home- and community-grown cannabis products will facilitate the implementation of public policies conducive to their safety and improvement. Objective: The aim of this study was to determine the cannabinoid chemotypes used for therapeutic purposes in Argentina and evaluate whether the cannabinoids present in homemade derivatives are comparable to those in commercially available products. Materials and Methods: High performance liquid chromatography with ultraviolet and diode array detector (HPLC/UV-DAD) analysis of 436 samples (oils, resins, and inflorescences) was carried out to determine the identity and concentration of five cannabinoids: tetrahydrocannabinolic acid (THCA), tetrahydrocannabinol (THC), cannabidiolic acid (CBDA), cannabidiol (CBD), and cannabinol (CBN). From three different sources, the samples represent the type of medical cannabis preparations to which patients have access. Results: The results indicate that the medium-to-low cannabinoid concentration in a significant number of homemade oil samples is similar to that found in commercial products. Most of the samples have a THC/CBD ratio >1 or only contain THC. Acidic cannabinoids were detected in homemade preparations, but were not reported in package inserts of commercial products. Conclusions: Our results indicate that despite their considerable variability, homemade preparations as a whole show cannabinoid levels and profiles equivalent to the commercially available products commonly used for medicinal, therapeutic, and palliative purposes in Argentina.


Assuntos
Canabidiol , Canabinoides , Cannabis , Alucinógenos , Humanos , Cannabis/química , Argentina , Canabinoides/análise , Canabinol/análise , Canabidiol/análise , Agonistas de Receptores de Canabinoides , Flores/química
13.
Drug Test Anal ; 15(9): 1027-1041, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36581323

RESUMO

This paper presents concentration ranges and positivity rates for the common drugs, alcohol markers, new psychoactive substances (NPS) and anabolic steroids tested in head hair (n = 138,352) and body hair (n = 9532) on samples of hair from medico-legal (n = 112,033) and workplace (n = 35,851) sectors tested in our laboratory. Statistically significant higher levels were found more often in the various types of body hair when compared with head hair, but fewer cases exhibited lower levels. For example, statistically significant higher levels were detected in leg hair for cannabinol, THC, methadone and EtG and in beard hair for THC, THC-COOH and 6-acetylmorphine. In contrast, significantly lower levels were detected in axilla hair for cannabinol, THC and for EDDP, but median levels of mephedrone and DHEA were higher. Overall, higher medium levels were detected in head hair samples tested in the UK when compared with those previously published for samples tested in Germany, indicating geographical differences in drug consumption. Recommendations are, firstly, that hair testing laboratories use the results of their own compiled previous positive results for guidance when interpreting hair testing results and, secondly, that laboratories periodically share and combine their accumulated data with other testing laboratories. The latter could be used to establish reference ranges associated with specific technical procedures which would improve interlaboratory comparability and improve laboratory testing services when interpreting hair testing results.


Assuntos
Canabinol , Metadona , Canabinol/análise , Cromatografia Gasosa-Espectrometria de Massas , Cabelo/química , Local de Trabalho , Detecção do Abuso de Substâncias/métodos
14.
Anal Chem ; 94(40): 13710-13718, 2022 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-36178203

RESUMO

With the ever-evolving cannabis industry, low-cost and high-throughput analytical methods for cannabinoids are urgently needed. Normally, (potentially) psychoactive cannabinoids, typically represented by Δ9-tetrahydrocannabinol (Δ9-THC), and nonpsychoactive cannabinoids with therapeutic benefits, typically represented by cannabidiol (CBD), are the target analytes. Structurally, the former (tetrahydrocannabinolic acid (THCA), cannabinol (CBN), and THC) have one olefinic double bond and the latter (cannabidiolic acid (CBDA), cannabigerol (CBG), and CBD) have two, which results in different affinities toward Ag(I) ions. Thus, a silica gel thin-layer chromatography (TLC) plate with the lower third impregnated with Ag(I) ions enabled within minutes a digital chromatographic separation of strongly retained CBD analogues and poorly retained THC analogues. The resolution (Rs) between the closest two spots from the two groups was 4.7, which is almost 8 times higher than the resolution on unmodified TLC. After applying Fast Blue BB as a chromogenic reagent, smartphone-based color analysis enabled semiquantification of the total percentage of THC analogues (with a limit of detection (LOD) of 11 ng for THC, 54 ng for CBN, and 50 ng for THCA when the loaded volume is 1.0 µL). The method was validated by analyzing mixed cannabis extracts and cannabis extracts. The results correlated with those of high-performance liquid chromatography with ultraviolet detection (HPLC-UV) (R2 = 0.97), but the TLC approach had the advantages of multi-minute analysis time, high throughput, low solvent consumption, portability, and ease of interpretation. In a desiccator, Ag(I)-TLC plates can be stored for at least 3 months. Therefore, this method would allow rapid distinction between high and low THC varieties of cannabis, with the potential for on-site applicability.


Assuntos
Canabidiol , Canabinoides , Cannabis , Alucinógenos , Canabidiol/análise , Canabinoides/análise , Canabinol/análise , Cannabis/química , Cromatografia em Camada Delgada , Dronabinol/análise , Extratos Vegetais/química , Sílica Gel , Smartphone , Solventes
15.
Molecules ; 27(17)2022 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-36080271

RESUMO

Cannabis is the most consumed illicit drug worldwide, and its legal status is a source of concern. This study proposes a rapid procedure for the simultaneous quantification of Δ9-tetrahydrocannabinol (THC), 11-hydroxy-Δ9-tetrahydrocannabinol (11-OH-THC), 11-nor-9-carboxy-Δ9-tetrahydrocannabinol (THC-COOH), cannabidiol (CBD), and cannabinol (CBN) in urine samples. Microextraction by packed sorbent (MEPS) was used to pre-concentrate the analytes, which were detected by gas chromatography-mass spectrometry. The procedure was previously optimized, and the final conditions were: conditioning with 50 µL methanol and 50 µL of water, sample load with two draw-eject cycles, and washing with 310 µL of 0.1% formic acid in water with 5% isopropanol; the elution was made with 35 µL of 0.1% ammonium hydroxide in methanol. This fast extraction procedure allowed quantification in the ranges of 1-400 ng/mL for THC and CBD, 5-400 ng/mL for CBN and 11-OH-THC, and 10-400 ng/mL for THC-COOH with coefficients of determination higher than 0.99. The limits of quantification and detection were between 1 and 10 ng/mL using 0.25 mL of sample. The extraction efficiencies varied between 26 and 85%. This analytical method is the first allowing the for determination of cannabinoids in urine samples using MEPS, a fast, simple, and low-cost alternative to conventional techniques.


Assuntos
Canabidiol , Canabinoides , Canabidiol/análise , Canabinoides/análise , Canabinol/análise , Dronabinol/análise , Cromatografia Gasosa-Espectrometria de Massas/métodos , Metanol/análise , Água
16.
Artigo em Inglês | MEDLINE | ID: mdl-35939416

RESUMO

Hempseed cake is a byproduct of hempseed oil extraction and is potentially a useful source of protein and fiber for use in ruminant diets. However, data are lacking on the appearance and/or clearance of cannabinoids in tissues of animals fed hempseed cake. To this end, a rapid method for quantifying cannabinol (CBN), cannabidiol (CBD), cannabinolic acid (CBNA), cannabidiolic acid (CBDA), cannabigerolic acid (CBGA), cannabichromenic acid (CBCA), cannabidivarin (CBDV), cannabidivarinic acid (CBDVA), tetrahydrocannabinol (THC) and tetrahydrocannabinolic acid (THCA) in cattle tissues, plasma, and urine was developed using rapid screen electrospray ionization mass spectrometry (RS-ESI-MS). Regression coefficients of matrix-matched standard curves ranged from 0.9946 to >0.9999 and analyte recoveries averaged from 90.2 ± 15.5 to 108.7 ± 18.7% across all compounds. Limits of detection and quantification ranged from 0.05 to 2.79 ng · mL-1 and 0.17 to 9.30 ng · mL-1, respectively, while the inter-day relative standard deviation ranged from 5.1 to 15.1%. Rapid screening electrospray ionization mass spectrometry (RS-ESI-MS) returned no false positives for any cannabinoid in plasma, urine, and tissue (liver, skeletal muscle) samples from 6 non-dosed control animals (n = 90 samples; of which 72 samples were plasma or urine and 18 samples were tissues). Across-animal cannabinoid concentrations measured in 32 plasma samples of cattle dosed with ground hemp were quantified by RS-ESI-MS; analytical results correlated well (r2 = 0.963) with independent LC-MS/MS analysis of the same samples.


Assuntos
Canabidiol , Canabinoides , Animais , Canabidiol/análise , Canabinoides/análise , Canabinol/análise , Cannabis , Bovinos , Cromatografia Líquida/métodos , Dronabinol/análise , Extratos Vegetais , Espectrometria de Massas por Ionização por Electrospray , Espectrometria de Massas em Tandem/métodos
17.
Spectrochim Acta A Mol Biomol Spectrosc ; 281: 121598, 2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-35816867

RESUMO

Many countries have legalized cannabis and its derived products for multiple purposes. Consequently, it has become necessary to develop a rapid, effective, and reliable tool for detecting delta-9-tetrahydrocannabinol (THC) and cannabinol (CBN), which are important biologically active compounds in cannabis. Herein, we have fabricated SERS chips by using glancing angle deposition and tuned dimensions of silver nanorods (AgNRs) for detecting THC and CBN at low concentrations. Experimental and computational results showed that the AgNR substrate with film thickness (or nanorod length) of 150 nm, corresponding to nanorod diameter of 79 nm and gap between nanorods of 23 nm, can effectively sense trace THC and CBN with good reproducibility and sensitivity. Due to limited spectral studies of the cannabinoids in previous reports, this work also explored towards identifying characteristic Raman lines of THC and CBN. This information is critical to further reliable data analysis and interpretation. Moreover, multianalyte detection of THC and CBN in a mixture was successfully demonstrated by applying an open-source independent component analysis (ICA) model. The overall method is fast, sensitive, and reliable for sensing trace THC and CBN. The SERS chip-based method and spectral results here are useful for a variety of cannabis testing applications, such as product screening and forensic investigation.


Assuntos
Canabinoides , Cannabis , Canabinoides/análise , Canabinol/análise , Cannabis/química , Dronabinol/análise , Reprodutibilidade dos Testes
18.
Phytochem Anal ; 33(7): 999-1017, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35733081

RESUMO

INTRODUCTION: Medical uses of Cannabis sativa L. have gained interest in recent decades, which highlights the need for defining appropriate quality specifications for Cannabis-based products. However, the complexity of plant matrices and structural similarity between cannabinoids make analytical development a challenging task. Thus, the application of analytical quality by design (AQbD)-driven approaches can favour the development of fit-for-purpose methods. OBJECTIVES: To develop a high-performance liquid chromatography diode array detector (HPLC-DAD) method for simultaneous quantification of cannabidiol, Δ9 -tetrahydrocannabinol, cannabidiolic acid, tetrahydrocannabinolic acid, and cannabinol in C. sativa by applying an AQbD-driven approach. MATERIALS AND METHODS: Critical method attributes (CMA) were established following the analytical target profile. Critical method variables (CMV) were categorised based on risk assessment and literature review. Selected CMV regarding sample preparation and chromatographic conditions were optimised using response surface methodology (RSM). The working point was estimated by multiple response optimisation using Deringer's desirability function. The validity of the optimal conditions was confirmed experimentally. Method validation was performed according to ANVISA and ICH guidelines. Relative response factors (RRFs) were also determined. RESULTS AND DISCUSSION: Baseline resolution of 12 major cannabinoids was achieved in a 35 min chromatographic analysis. All experimental responses obtained during confirmatory analyses were within the prediction intervals (PI95% ). Method's selectivity, linearity (10-100 µg/mL), precision, bias, extraction recovery, and ruggedness were satisfactorily demonstrated. CONCLUSIONS: The application of an AQbD-driven approach allowed for a better understanding of the effects of the ensemble of CMV on the analyte's behaviour, enabling the definition of appropriate conditions to ensure consistent achievement of the intended method's performance.


Assuntos
Canabidiol , Canabinoides , Cannabis , Infecções por Citomegalovirus , Canabidiol/análise , Canabinoides/análise , Canabinol/análise , Cannabis/química , Cromatografia Líquida de Alta Pressão/métodos , Dronabinol/análise , Dronabinol/química , Extratos Vegetais/química
19.
Forensic Sci Int ; 335: 111309, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35462181

RESUMO

Cannabis cultivation for medical purposes in Brazil has been increased in the last years. While cannabis crops are prohibited, hundreds patients have been granted with judicial authorizations and there is little information about the cultivation conditions, yields and chemical profiles of the plants. Cannabis plants contain hundreds of compounds, with cannabinoids and terpenes the main drivers of their toxicological and pharmacological properties. Besides the cannabinoids, terpene contents are useful for the chemotaxonomic classification of different varieties, and their role in forensic analyses should be further delineated. The present study monitored cannabis crops of fifteen participants who were granted special licenses by the Brazilian Courts in Rio de Janeiro and São Paulo. The cultivation conditions were monitored and five cannabinoids (tetrahydrocannabinol acid-THCA, tetrahydrocannabinol-THC, cannabidiolic acid-CBDA, cannabidiol-CBD and cannabinol-CBN) and nineteen terpenes were quantified in cannabis flowers. The total grow cycle of thirty-five cannabis plants ranged from 10 to 24 weeks. The dry flower yields ranged 22-90 g per plant. Most cannabis specimens were CBD-rich varieties (CBD levels from 1.6% to 16.7%, and THC levels from 0.0% to 2.6%, n = 22) used to treat epileptic patients. The THC-rich varieties contained CBD levels ranging from 0.03% to 0.8%, and THC levels from 0.7% to 20.1%, n = 11. Fewer of the samples contained THC:CBD ratios of approximately 1:1 (CBD levels of 3.3-3.8% and THC levels of 2.2-3.7%, n = 2). The most abundant terpenes in the cannabis flowers were beta-caryophyllene, alpha-humulene, guaiol and alpha-bisabolol. CBD-rich varieties showed significant higher levels of beta-caryophyllene and alpha-humulene in comparison with THC-rich varieties. Overall, the study herein provides data concerning medical cannabis crops grown in a region of Brazil that not only guide individual medical cannabis cultivation methods but also aid forensic analyses.


Assuntos
Canabidiol , Canabinoides , Cannabis , Alucinógenos , Maconha Medicinal , Analgésicos , Brasil , Canabinoides/análise , Canabinol/análise , Cannabis/química , Dronabinol/análise , Humanos , Terpenos
20.
J Chromatogr A ; 1671: 463020, 2022 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-35405405

RESUMO

The knowledge of compounds stability in the process of sample preparation for analysis and during analysis itself helps assess the accuracy and precision of estimating their concentration in tested samples. The present paper shows that a significant amount of CBD present in the blood/plasma sample analyzed by means of GC transforms in the hot GC injector not only to 9α-hydroxyhexahydrocannabinol, 8-hydroxy-iso-hexahydrocannabinol, delta-9-tetrahydrocannabinol, Δ8-tetrahydrocannabinol, and cannabinol but also to the trifluoroacetic esters of Δ9-THC and Δ8-THC, when trifuoroacetic acid is used as protein precipitation agent. The amount of those newly revealed CBD transformation products depends on the GC injector temperature and on the extrahent type when extracts of the supernatants centrifuged from human plasma samples are analyzed after their preliminary protein precipitation by trifuoroacetic acid. Although trifuoroacetic acid as a protein precipitating agent has many disadvantages, it is quite often used for this purpose due to its very high protein precipitation efficiency. The results presented in the study demonstrate why the use of trifuoroacetic acid for plasma samples deproteinization should be avoided when CBD is determined by GC.


Assuntos
Canabidiol , Artefatos , Canabidiol/análise , Canabinol/análise , Canabinol/química , Dronabinol/análise , Cromatografia Gasosa-Espectrometria de Massas/métodos , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...